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Introduction 
 A growing line of evidence has pointed to the importance of noncoding RNAs (ncRNAs) 
in the regulation of gene expression at multiple levels in both prokaryotes and eukaryotes. 
NcRNAs are defined as all RNA transcripts that lack protein-coding capacity. Recent studies 
have suggested that the human genome contains ~21,561 protein-coding genes, while the 
predicted number of transcribed genes is far higher, ~69,185 (5). In addition to the abundance of 
ncRNAs in the human and other mammalian genomes, these molecules execute a diverse array 
of functions. Besides the housekeeping ncRNAs such as ribosomal RNAs (rRNAs), transfer 
RNAs (tRNAs), small nuclear RNA (snRNA), small nucleolar RNAs (snoRNAs), RNAse P 
RNAs, and telomerase RNA, numerous other ncRNAs participate in regulatory function (4,5). In 
mammalian genomes, for instance, introns have not only been implicated in nucleosome 
formation, alternative pre-mRNA-splicing, and scaffold/matrix-attachment, but have also been 
shown to encode microRNAs (miRNAs) and repetitive elements (5). NcRNAs are involved in 
genomic imprinting, dosage compensation, and translational modulation through the RNAi 
pathway or by acting as natural antisense transcripts, all of which participate in the development 
of an organism (5). Thus, the biology of ncRNAs is rich and complex. 
 
 Attempts to identify new ncRNAs, however, have been particularly challenging. As many 
of the cellular mechanisms dispose of nongenic noncoding RNA species, scientists have 
proposed two principle criteria for confirming ncRNAs. First, ncRNAs need to be shown to have 
function; and second, there should be evidence showing that they do not encode for a small 
peptide (3). However, using genetic screen to identify new ncRNAs has given low yields because 
ncRNAs are usually variable in size, lacking in ORF, and relatively immune to point mutations 
(5). Computational analysis seems to be a more promising approach by scanning genomes for 
ncRNAs. Yet, unlike in identifying new protein-coding genes, ncRNAs sequences do not give 
strong statistical signals (6). The crux of the problem lies in the fact that ncRNA sequences 
diverge across phyla, making sequence comparisons difficult (5). 
 
Comparative Sequence Analysis 
 
The Three-Model Comparison 
 One of the better methods developed so far is by Rivas et al. and uses comparative 
sequence analysis to detect novel structural RNA genes by incorporating both the sequence and 
the secondary structure information. The method extends from concepts of previous work by 
Badger & Olsen. In Badger & Olsen's work, BLASTN program is first used to locate regions of 
significant sequence similarity between two bacterial species (6). Then, a program analyzes these 
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ungapped, aligned regions for evidence of coding structure (6). For instance, synomynous 
substitution would receive a positive score while dissimilar amino acid substitution would get a 
negative score (6). From this basic framework, Rivas et al. had four extensions: 1) the use of 
fully probabilistic models; 2) the addition of a third model of pairwise alignments constrained by 
structural RNA evolution; 3) the allowance of gapped alignment; and 4) the allowance of partial 
pairwise alignment to represent structural RNA (6). 
 

 
Figure 1. The Three Models. (A) The null hypothesis model in which mutations are position-
independent. (B) The coding model where codons of homologous proteins are compared. (C)  The RNA 
model that uses both sequence and its secondary structure for comparison. Note: Figure taken from (6). 
 
 The use of fully probabilistic models allows differentiation between coding, RNA, and 
null class classification of the genome by employing different evolutionary constraints. 
Essentially, pair hidden Markov models (pair HMMs) were proposed to be used for the null class 
control and the protein-coding class. The pair stochastic context-free grammar (pair-SCFG) was 
introduced to incorporate the secondary structures of the sequence. In the null hypothesis model, 
one assumes that mutations occur in a position-independent fashion (6). Thus, one examines 
each base pair separately, and calculate the alignment probability as the product of  the 
probabilities of the individually aligned positions (see Fig 1A). This model is appropriate as a 
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control. In the coding model, one assumes that the aligned sequences encode homologous 
proteins (6). As one expects substitution of amino acid to be mostly synonymous, a table for the 
probabilities of correlated emission of two codons is constructed (6). Also, because the reading 
frame can be in six different orientations, the overall alignment probability is the sum of the 
alignment probabilities from the six frames and the assumption is that all six frames are 
equiprobable (see Fig 1B) (6). As this model is used in a rudimentary differentiation between 
coding sequences and junk DNA, the pair HMM work well in determining protein sequences. 
 
 The RNA model is more challenging, as one needs to differentiate structural RNAs from 
nonstructural sequences. Currently, the pair-SCFG (Fig 1C)  is the widely used model to 
compare sequence structures during alignment. The model uses three states of substring end 
base-pairing and two types of emission probabilities (6). In general though, predicting RNA 
secondary structure involves two different approaches, one thermodynamic and the other 
comparative (1). In comparative analysis, one takes into account the covariation of homologous 
sequences to determine which base-pairings are  preserved (1). Pair-SCFG is advantageous in 
discovering new ncRNAs because it is not restricted by the available RNA folding patterns, as is 
by other  models (1). It is, however, very computationally labor-intensive (1). One possible way 
to refine the pair-SCFG is to overlay another  program that looks at clustering. It is unlikely that 
a structured ncRNA to contain a single hairpin, as specificity would likely to require more spatial 
determinants such as multiple hairpins. Thus, the presence of hairpin clustering could be 
indicative a potential catalytic ncRNA or a multi-functional one. The clustering technique may 
be a rudimentary way of providing evidence that tertiary structures exist for these RNA 
sequences, even though to determining the actual tertiary structures may be too computationally 
complex. In addition, by creating a hairpin map, with the hairpin length information kept intact, 
one may align these hairpin maps to determine whether conserved tertiary folds might exist. This 
hierarchical clustering, from sequence to hairpins, from hairpins to “hairpin modules”, may help 
lower false positives and offer a more complex picture of conserved tertiary structure of RNA 
(see Fig 2).  

 
 

    Figure 2. Hairpin clusters. The existence of hairpin clusters 
    or repeating hairpin structure motifs may be indicative of higher  
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    order conservation in structure. 
 
 In the thermodynamic approach, on the other hand, one takes into account base-pairing, 
base-stacking, and near-neighbor forces to calculate the minimum free energy (1). The existence 
of folded RNAs at their minimum free energy may not be the best assumption as RNAs in nature 
tend to be within 10% of their minimum free energies (1). MFOLD is the most commonly used 
program to fold RNA, with a prediction accuracy around 50% (1). However, as MFOLD does 
not work efficiently on large scale, it may not particularly useful in this case in searching for new 
ncRNAs.  
 
Limitations of the Three-Model Comparison 
 One weakness that Rivas et al. pointed out with the three models is the introduction of the 
transition probability parameters in addition to the emission probability. The authors assigned 
arbitrary values to the transition parameters by first discriminating model-tested data and random 
sequence alignments (6). In the null hypothesis, the transition parameters should be similar for 
each paired letter of the sequence unless the sequence composition is biased towards a particular 
base composition. For instance, in hyperthermophiles, structured ncRNA genes have higher GC 
content presumably to allow RNAs more thermostability at high temperatures (3). The transition 
parameters for the coding model may be better determined if amino acids were assigned 
hydrophobicity values as hydrophobic amino acids tend to cluster together. This may be of some 
use for the null-hypothesis and coding models, but for the large part, the values may still be 
arbitrary. For the RNA model, it is difficult to determine whether the stem of a hairpin has a 
higher chance of growing than forming the loop. One could use a training set and determine the 
average the hairpin lengths and the probabilities of sequences in stem extensions and in loops. In 
all cases, the transition parameters will remain a difficult problem to resolve. 
 
 Another weakness in the approach Rivas et al. is discussed briefly by the authors. The 
models they use detect conserved RNA secondary structures, which would include the cis-
regulatory mRNA structures as well. Thus, an algorithm may be needed to distinguish between 
the cis-regulatory and trans-regulatory structures. One approach that may be employed was 
developed by a group at Harvard. The group looked into cis-regulatory modules (CRMs) in DNA 
using a hierarchical mixture method under two assumptions: 1) eukaryote genes are not regulated 
by a single site, but by cis-regulatory modules that have multiple transcriptional factor (TF) 
binding sites, and 2) these TF binding sites also have specific motifs (8). This group's method 
analyzes the genome sequence at two levels. At one level, the method distinguishes a mixture of 
CRMs from the background sequence, and at the second level, it examines the motifs within 
each CRM. Because one scans the whole genome for ncRNA, it is possible that the structured 
sequence may be either a cis-regulatory DNA or mRNA structure. Although one may use the 
hierarchical mixture method to search for cis-regulatory sequences to differentiate from trans-
regulatory sequences, one still has to differentiate between DNA and mRNA structure. One 
possibility is that the binding motifs for DNA is different than that of mRNA, though one can 
imagine a case where mRNA structure is similar to that of DNA, and the RNA may help 
sequester certain TFs from binding to the DNA sequence. However, one can use specific motifs 
to search for specific ncRNAs. A group in China, for example, used a probabilistic model and 
conserved primary and secondary motifs to search orphan C/D or H/ACA snoRNAs while the 
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usual approach is based on simple sequence complementarity to rRNAs or snRNAs (7). Other 
ncRNA-specific motifs can also be used to see whether hairpins overlap and whether they are in 
close proximity to those motifs. The other concern is that the regulatory regions of the mRNA 
may have multiple binding sites for proteins and that they may not exist as modules. In that case, 
a non-hierarchical search can be used to search for motifs. In both scenarios, an efficient way of 
lowering the number of false positives may be to use known cis-regulatory sequences to develop 
an algorithm to filter out sequences from the original model.    
 
 Finally, an obvious limitation of the comparative analysis using structural information is 
that ncRNAs with relatively little secondary structure will not be identified (3). These ncRNAs 
might be relatively conserved, but with little known function. In this case, the computational 
approach may not be the most appropriate; rather microarray experiments might better determine 
the existence of these nonstructural transcripts. 
 
Testing the Models 
 To test the comparative three-model system, Rivas et al. generated potential structural 
RNAs and randomly shuffled the basepairs to test for specificity and adjust for false positives 
and false negatives (6). In principle, the RNA-generated data should give a positive score while 
the shuffled data would have the same composition as the RNA-generated data, but lack the 
correlative information, and thus should not return a positive score (6). The simulated data test 
given by Rivas et al. produced a frequency of 0.023 false positives and 0.081 false negatives at a 
threshold of 1.4 bits for the RNA posterior log-odds score. A 5-bit threshold was set for to lower 
the false positives. For known RNAs, however, the specificity degrades quickly for >90% 
identity in alignments (6). In either case, the performance of the models seemed promising as 
one can choose the percent identity from the BLASTN alignment that corresponds to the desired 
specificity. 
 
 What would be particularly interesting is to change the training set for a more specific 
model in ncRNA identification. In this study, the training set comprised of tRNAs and rRNAs, 
however, other training sets can be tested as well. In a recent study to identify miRNA, a control 
group and a training set were used that search for distinctive properties such as structural 
features such as hairpin length, hairpin-loop length, thermodynamic stability, base-pairing, bulge 
size, location, and distance of miRNA form the loop of its hairpin precursor; and sequence 
features such as nucleotide content and location, sequence complexity, repeat elements, and 
internal and inverted sequence repeats (2). Using miRNA as a training set can lead to a better 
understanding of the similarity in ncRNA structure. For instance, by comparing values of the 
training set used for a particular ncRNA class versus a global ncRNA search, one can gain more 
insight into variations in ncRNAs and possible adjustments to the parameters to obtain new 
results. Thus, using other training sets such as snRNAs or snoRNA, one can determine the 
dependency of the new ncRNAs search on the training set.  
 
Conclusion 
 The emerging field of ncRNAs provides an exciting opportunity for new discovery, 
especially since the regulatory functions of ncRNAs are so diverse. Although the biology of 
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ncRNAs is fascinating, the process of identifying new ncRNAs is particularly challenging. 
Properties of ncRNAs such as size, composition, location that make them much harder to detect 
than proteins. Even computational methods in scanning the genome for ncRNA face many 
obstacles. In this evaluation of the three-model comparison to determine whether the aligned 
regions are protein, RNA, or neither, the logic, as well as the strengths and weaknesses of using 
Pair HMM and Pair-SCFG, were examined. Overall, pair-SCFG has much greater potential than 
other models in the field, which usually use known RNA folding patterns to search for ncRNAs.  
I introduced the notion of a hairpin map where clustering and repeating hairpin motifs can be 
indicative of conserved higher order structure. I also proposed expanding the training set, to 
determine the variations between ncRNA classes and to decide on the extent of bias established 
by the choice of the training set. With new findings derived from this computational search 
algorithm, a larger database of potential ncRNAs can be created and more insights into the 
ncRNA evolution can be gained. 
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